If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-11n-22=0
a = 7; b = -11; c = -22;
Δ = b2-4ac
Δ = -112-4·7·(-22)
Δ = 737
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{737}}{2*7}=\frac{11-\sqrt{737}}{14} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{737}}{2*7}=\frac{11+\sqrt{737}}{14} $
| 14=w-23 | | 30=-2(7m-1)+4(m+7) | | 3x2+5x-17=0 | | 15x+5=230 | | -2x+3=5x×2 | | 10x-13=16+9x | | 5x+9=3(1x-7)+6 | | 2^-x^+5=16 | | (13x-34)+(6x+5)=180 | | 5x+20+5x+20+2x+56=180 | | -14=r2-23 | | 111=6x+7(x+1) | | 9(w-4)=6w-39 | | x+100=100+273 | | 2v^2-72=0 | | a2-63=106 | | x(5+x)=5x+25 | | 9p^2+p-6=0 | | 1/2v=6 | | 7.5=8.4w-5.3-w | | 10+3j=52 | | 6v-1+8v=-15 | | 2=5-5+v | | 100+x=x+273 | | f+19=27 | | (2k+15)=(5k+6) | | 1x+9=6(1x-11) | | 9y=6y | | 26=q-24 | | .5^x=100 | | 25x1=101 | | 6p+2=6p-2 |